当前位置:首页 > 小学教育 > 正文

正态分布的曲线应用

综述
⒈ 估计频数分布 一个服从正态分布的变量只要知道其均数与标准差就可根据公式即可估计任意取值范围内频数比例。
⒉ 制定参考值范围
⑴正态分布法 适用于服从正态(或近似正态)分布指标以及可以通过转换后服从正态分布的指标。
⑵百分位数法 常用于偏态分布的指标。表3-1中两种方法的单双侧界值都应熟练掌握。
⒊ 质量控制:为了控制实验中的测量(或实验)误差,常以 作为上、下警戒值,以 作为上、下控制值。这样做的依据是:正常情况下测量(或实验)误差服从正态分布。
⒋ 正态分布是许多统计方法的理论基础。检验、方差分析、相关和回归分析等多种统计方法均要求分析的指标服从正态分布。许多统计方法虽然不要求分析指标服从正态分布,但相应的统计量在大样本时近似正态分布,因而大样本时这些统计推断方法也是以正态分布为理论基础的。 例1.10 某地1993年抽样调查了100名18岁男大学生身高(cm),其均数=172.70cm,标准差s=4.01cm,①估计该地18岁男大学生身高在168cm以下者占该地18岁男大学生总数的百分数;②分别求X+-1s、X+-1.96s、X+-2.58s范围内18岁男大学生占该地18岁男大学生总数的实际百分数,并与理论百分数比较。
本例,μ、σ未知但样本含量n较大,按式(3.1)用样本均数X和标准差S分别代替μ和σ,求得u值,u=(168-172.70)/4.01=-1.17。查附表标准正态曲线下的面积,在表的左侧找到-1.1,表的上方找到0.07,两者相交处为0.1210=12.10%。该地18岁男大学生身高在168cm以下者,约占总数12.10%。其它计算结果见表3。
表3 100名18岁男大学生身高的实际分布与理论分布 分布
x+-s 身高范围(cm) 实际分布
人数 实际分布
百分数(%) 理论分布(%) X+-1s 168.69~176.71 67 67.00 68.27 X +-1.96s 164.84~180.56 95 95.00 95.00 X+-2.58s 162.35~183.05 99 99.00 99.00 考试成绩及学生综合素质研究
教育统计学统计规律表明,学生的智力水平,包括学习能力,实际动手能力等呈正态分布。因而正常的考试成绩分布应基本服从正态分布。考试分析要求绘制出学生成绩分布的直方图,以“中间高、两头低”来衡量成绩符合正态分布的程度。其评价标准认为:考生成绩分布情况直方图,基本呈正态曲线状,属于好,如果略呈正(负)态状,属于中等,如果呈严重偏态或无规律,就是差的。
从概率统计规律看,“正常的考试成绩分布应基本服从正态分布”是正确的。但是必须考虑人与物的本质不同,以及教育的有所作为可以使“随机”受到干预,用曲线或直方图的形状来评价考试成绩就有失偏颇。许多教育专家(如上海顾泠沅、美国布鲁姆等)已经通过实践论证,教育是可以大有作为的,可以做到大多数学生及格,而且多数学生可以得高分,考试成绩曲线是偏正态分布的。但是长期受到“中间高、两头低”标准的影响,限制了教师的作为,抑制了多数学生能够学好的信心。这是很大的误会。通常正态曲线有一条对称轴。当某个分数(或分数段)的考生人数最多时,对应曲线的最高点,是曲线的顶点。该分数值在横轴上的对应点与顶点连接的线段就是该正态曲线的对称轴。考生人数最多的值是峰值。我们注意到,成绩曲线或直方图实际上很少对称的,称之为峰线更合适。 某些医学现象,如同质群体的身高、红细胞数、血红蛋白量,以及实验中的随机误差,呈现为正态或近似正态分布;有些指标(变量)虽服从偏态分布,但经数据转换后的新变量可服从正态或近似正态分布,可按正态分布规律处理。其中经对数转换后服从正态分布的指标,被称为服从对数正态分布。
医学参考值范围亦称医学正常值范围。它是指所谓“正常人”的解剖、生理、生化等指标的波动范围。制定正常值范围时,首先要确定一批样本含量足够大的“正常人”,所谓“正常人”不是指“健康人”,而是指排除了影响所研究指标的疾病和有关因素的同质人群;其次需根据研究目的和使用要求选定适当的百分界值,如80%,90%,95%和99%,常用95%;根据指标的实际用途确定单侧或双侧界值,如白细胞计数过高过低皆属不正常须确定双侧界值,又如肝功中转氨酶过高属不正常须确定单侧上界,肺活量过低属不正常须确定单侧下界。另外,还要根据资料的分布特点,选用恰当的计算方法。常用方法有:
⑴正态分布法:适用于正态或近似正态分布的资料。
双侧界值:X+-u(u)^S单侧上界:X+u(u)^S,或单侧下界:X-u(u)^S
⑵对数正态分布法:适用于对数正态分布资料。
双侧界值:lg-1[X(lgx)+-u(u)S(lgx)];单侧上界:lg-1[X(lgx)+u(u)S(lgx)],或单侧下界:lg-1[X(lgx)-u(u)S(lgx)]。
常用u值可根据要求由表4查出。
⑶百分位数法:常用于偏态分布资料以及资料中一端或两端无确切数值的资料。
双侧界值:P2.5和P97.5;单侧上界:P95,或单侧下界:P5。
表4常用u值表 参考值范围(%) 单侧 双侧 80 0.842 1.282 90 1.282 1.645 95 1.645 1.960 99 2.326 2.576 统计的理论基础
如t分布、F分布、分布都是在正态分布的基础上推导出来的,u检验也是以正态分布为基础的。此外,t分布、二项分布、Poisson分布的极限为正态分布,在一定条件下,可以按正态分布原理来处理。
概率论中最重要的分布
正态分布有极其广泛的实际背景,生产与科学实验中很多随机变量的概率分布都可以近似地用正态分布来描述。例如,在生产条件不变的情况下,产品的强力、抗压强度、口径、长度等指标;同一种生物体的身长、体重等指标;同一种种子的重量;测量同一物体的误差;弹着点沿某一方向的偏差;某个地区的年降水量;以及理想气体分子的速度分量,等等。一般来说,如果一个量是由许多微小的独立随机因素影响的结果,那么就可以认为这个量具有正态分布(见中心极限定理)。从理论上看,正态分布具有很多良好的性质 ,许多概率分布可以用它来近似;还有一些常用的概率分布是由它直接导出的,例如对数正态分布、t分布、F分布等。
主要内涵
在联系自然、社会和思维的实践背景下,我们以正态分布的本质为基础,以正态分布曲线及面积分布图为表征(以后谈及正态分布及正态分布论就要浮现此图),进行抽象与提升,抓住其中的主要哲学内涵,归纳正态分布论(正态哲学)的主要内涵如下:
整体论
正态分布启示我们,要用整体的观点来看事物。“系统的整体观念或总体观念是系统概念的精髓。” 正态分布曲线及面积分布图由基区、负区、正区三个区组成,各区比重不一样。用整体来看事物才能看清楚事物的本来面貌,才能得出事物的根本特性。不能只见树木不见森林,也不能以偏概全。此外整体大于部分之和,在分析各部分、各层次的基础上,还要从整体看事物,这是因为整体有不同于各部分的特点。用整体观来看世界,就是要立足在基区,放眼负区和正区。要看到主要方面,还要看到次要方面,既要看到积极的方面还要看到事物消极的一面,看到事物前进的一面还要看到落后的一面。片面看事物必然看到的是偏态或者是变态的事物,不是真实的事物本身。
重点论
正态分布曲线及面积分布图非常清晰的展示了重点,那就是基区占68.27%,是主体,要重点抓,此外95%,99%则展示了正态的全面性。认识世界和改造世界一定要住住重点,因为重点就是事物的主要矛盾,它对事物的发展起主要的、支配性的作用。抓住了重点才能一举其纲,万目皆张。事物和现象纷繁复杂,在千头万绪中不抓住主要矛盾,就会陷入无限琐碎之中。由于我们时间和精力的相对有限性,出于效率的追求,我们更应该抓住重点。在正态分布中,基区占了主体和重点。如果我们结合20/80法则,我们更可以大胆的把正区也可以看做是重点。
发展论
联系和发展是事物发展变化的基本规律。任何事物都有其产生、发展和灭亡的历史,如果我们把正态分布看做是任何一个系统或者事物的发展过程的话,我们明显的看到这个过程经历着从负区到基区再到正区的过程。无论是自然、社会还是人类的思维都明显的遵循这这样一个过程。准确的把握事物或者事件所处的历史过程和阶段极大的有助于掌握我们对事物、事件的特征和性质,是我们分析问题,采取对策和解决问题的重要基础和依据。发展的阶段不同,性质和特征也不同,分析和解决问题的办法要与此相适应,这就是具体问题具体分析,也是解放思想、实事求是、与时俱乐进的精髓。正态发展的特点还启示我们,事物发展大都是渐进的和累积的,走渐进发展的道路是事物发展的常态。例如,遗传是常态,变异是非常态。
总之,正态分布论是科学的世界观,也是科学的方法论,是我们认识和改造世界的最重要和最根本的工具之一,对我们的理论和实践有重要的指导意义。以正态哲学认识世界,能更好的认识和把握世界的本质和规律,以正态哲学来改造世界,能更好的在尊重和利用客观规律,更有效的改造世界。
弗朗西斯弗朗西斯·高尔顿 [Francis Galton 1822.02.16-1911.01.17],英国探险家、优生学家、心理学家,差异心理学之父,也是心理测量学上生理计量法的创始人。
高而顿对心理学的贡献,大概可以归纳未差异心理学、心理测量的量化和实验心理学三方面:
⒈他率先研究个体差异。他在伦敦南肯辛顿博物馆他的人类测量实验室内,利用仪器作人类学测量及心理测量。测量项目有身高、体重、肺活量、拉力和握力、扣击的速率、听力、视力、色觉等,以研究能力的个体差异。又用问答法研究意象的个体差异。要求被试先确定一件事,如早餐的情境,然后被试回忆心目中出现餐桌上实物的意象,即食物的鲜明度、确定度等。对答案整理后,他发现被试的意象有很大的个体差异:有的人以肌肉运动觉意象为主,有的人以听觉意象为主,有的人以视觉意象为主。
他强调遗传是形成个体差异的原因。他通过谱系调查,论证遗传因素与个体差异的关系。他是第一个明确提出普通能力和特殊能力主张的人。他在调查 1768-1868 年这100年间英国的首相、将军、文学家和科学家共 977 名获得智力成熟的人的家谱后发现,其中有89个父亲、129个儿子、114个兄弟,共332名杰出人士。而在一般老百姓中4000人才产生一名杰出人士。因此断言“普通能力”是遗传的。在调查30家有艺术能力的家庭中,他发现这些家庭中的子女也有艺术能力的占64%;而150家无艺术能力的家庭,其子女中只有21%有艺术能力,因此断言艺术能力 - “特殊能力”也是遗传的。他发现,遗传亲属关系程度的降低,杰出亲属的比例也显著地下降。他还用80对双生子的资料,以双生子比其他亲兄弟、亲姐妹在心理特点上更为相像的事例,证明人的心理完全是遗传的。由此也使他第一个注意到同卵双生和异卵双生在估计遗传和环境因素在人的变异方面的相对作用的方法论的重要性。高尔顿根据遗传与个体差异的关系倡导善择配偶,改良人种,并在1883年《人类才能及其发展的研究》一书中首创“优生学”这一术语。
⒉心理学研究之量化,始自高尔顿。他发明了许多感官和运动的测试,并以数量代表所测得的心理特质之差异。他认为人的所有特质,不管是物质的还是精神的,最终都可以定量叙述,这是实现人类科学的必要条件,故最先应用统计法处理心理学研究资料,重视数据的平均数与高中差数。他收集了大量资料证明人的心理特质在人口中的分布如同身高、体重那样符合正态分布曲线。他在论及遗传对个体差异的影响时,为相关系数的概念作了初步提示。如他研究了“居间亲”和其成年子女的身高关系,发现居间亲和其子女的身高有正相关,即父母的身材较高,其子女的身材也有较高的趋势。反之,父母的身材较低,其子女也有较矮的趋势。同时发现子女的身高常与其父母略有差别,而呈现“回中”趋势,即离开其父母的身高数,而回到一般人身高的平均数。
⒊1883年,高尔顿出版了《人类才能及其发展的研究》,书中概括地表述了两项在实验心理学中极为重要的研究方法和成果。第一个是关于自由联想的实验:他事先在75张纸条上各写一个单词,每次只让受试者看一张纸条,再用一个精密的计时器测出由此引出的两个即兴到来的联想所需的时间,然后对这些联想在受试者的经验中的可能起源加以分析,他发现最经常的联想往往来自遥远的童年。在这项实验中,他还证实人类具有一种看到或听到某一数字就能联想到某一特定形状的能力,他称这种现象为“数目形”。第二个是关于心理意象的广泛调查:他要求受试者先想一件确定的东西,然后尽量注意自己的“心视”画面,并回答如明亮度,清晰度、色彩等一系列问题,并按其强度记分。值得一提的是,在这些研究中,他首先在心理学中引进了调查表和评分办法。他对实验心理学的贡献还包括一系列他所发明的心理测验仪器和测验方法。有些仪器后来就以他的名字来命名,例如测量听觉阈的高尔顿笛和测量视觉范围的高尔顿棒,这些仪器直到20世纪30年代都是心理实验室的标准仪器。他还用盛有不同物质的瓶子来测验嗅觉,这一方法被后人沿用至今。除此之外,他又设计了测量肌肉感觉、反应力、触觉的仪器和方法。
注:美国心理学家特尔曼(L. M. Terman)曾根据有关文献的记载,用他自己设计的斯坦福 - 比纳标准对幼年的高尔顿的智力进行了估算,他认为高尔顿3-8岁间的智力年龄几乎等于实际年龄的2倍,其智商约为200。
智力、能力
理查德·赫恩斯坦 [(Richard J. Herrnstein 1930.05.20-1994.09.13),美国比较心理学家]和默瑞(Charles Murray)合著《正态曲线》一书而闻名,在该书中他们指出人们的智力呈正态分布。智力主要是遗传的并因种族的不同而不同,犹太人、东亚人的智商最高,其次为白人,表现最差的是黑人、西班牙裔人。他们检讨了数十年来心理计量学与政策学的研究成果,发现美国社会轻忽了智商的影响愈变愈大的趋势。他们力图证明,美国现行的偏向于以非洲裔和南美裔为主的低收入阶层的社会政策,如职业培训、大学教育等,完全是在浪费资源。他们利用应募入伍者的测试结果证明,黑人青年的智力低于白人和黄种人;而且,这些人的智力已经定型,对他们进行培训收效甚微。因此,政府应该放弃对这部分人的教育,把钱用于包括所有种族在内的启蒙教育,因为孩子的智力尚未定型,开发潜力大。由于此书涉及黑人的智力问题,一经出版便受到来自四面八方的围攻。

亲子活动应当怎么开展才更有意义?

正态分布的曲线应用

如何激发青少年运动员对羽毛球训练的兴趣

相关文章:

课程游戏化在幼儿教育中的应用举隅

泉州市小学数学书是什么版本的?

农村小学生源越来越少,农村小学该何去何从?

少儿学习国学有哪些好处呢?

东莞市向日葵教育发展有限公司怎么样?

学英语应怎样综合应用?

几何知识实际应用的资料

如何应用政策知识?

发表评论

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。