一般正态分布与标准正态分布的转化由于一般的正态总体其图像不一定关于y轴对称,对于任一正态总体,其取值小于x的概率。只要会用它求正态总体在某个特定区间的概率即可。“小概率事件”和假设检验的基本思想“小概率事件”通常指发生的概率小于5%的事件。一般正态分布与标准正态分布的区别与联系正态分布也叫常态分布,是连续随机变量概率分布的一种,自然界、人类社会、心理和教育中大量现象均按正态形式分布,例如能力的高低,学生成绩的好坏等都属于正态分布。标准正态分布是正态分布的一种,具有正态分布的所有特征。所有正态分布都可以通过Z分数公式转换成标准正态分布。两者特点比较:⑴正态分布的形式是对称的,对称轴是经过平均数点的垂线。⑵中央点最高,然后逐渐向两侧下降,曲线的形式是先向内弯,再向外弯。⑶正态曲线下的面积为1。正态分布是一族分布,它随随机变量的平均数、标准差的大小与单位不同而有不同的分布形态。标准正态分布是正态分布的一种,其平均数和标准差都是固定的,平均数为0,标准差为1。⑷正态分布曲线下标准差与概率面积有固定数量关系。所有正态分布都可以通过Z分数公式转换成标准正态分布。主要特征1.集中性:正态曲线的高峰位于正中央,即均数所在的位置。2.对称性:正态曲线以均数为中心,左右对称,曲线两端永远不与横轴相交。3.均匀变动性:正态曲线由均数所在处开始,分别向左右两侧逐渐均匀下降。4.正态分布有两个参数,即均数μ和标准差σ,可记作N(μ,σ)。5.u变换:为了便于描述和应用,常将正态变量作数据转换。3σ原则
正态分布的类型?
相关文章:
发表评论
◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。