2021年小学还考鸡兔同笼问题吗?
2021年小学还考鸡兔同笼问题,这个应该每年都会考。
小学奥数—如何解决鸡兔同笼问题?
解决方法
方法一:假设法(或叫极限法,代替法)
方法基础:
如果用1只兔子代替1只鸡,则多算2只脚
如果用1只鸡代替1只兔子,则少算2只脚
因此有:
(1)假设35个头全是鸡,则
脚应该是35×2=70(只)
比实际少了94-70=24 (只)
每只兔少算了两只脚,因此有兔子:
24÷2=12 (只)
有鸡 35-12=23 (只)
(2)假设35个头全是兔子的,则
脚应该是35×4=140 (只)
比实际多了 140-94=46 (只)
每只鸡多算了两只脚,因此有鸡:
46÷2=23 (只)
有兔子 35-23=12 (只)
方法二:方程法
假设35只鸡兔中有鸡x只,则有兔子(35-x)只
根据题意有:
2x+4(35-x)=94
解得 x=23 35-x=12
则可得:
有鸡23只,有兔子12只
(同理亦可设兔子x只,鸡(35-x)只)
列方程已知都是非常简单的方法,只要根据题干已知条件,对应写出等式就可以了。由于小学只学了一元一次方程,所以需要注意的是,只有一个未知数的时候,需要用这个未知数写出另外一个变量的表达方法
鸡兔同笼问题详解?
1、题目:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?现在翻译为:有若干只鸡和兔子在一个笼子里,从上头数,有35只头,从下面数,有94只脚,问鸡和兔子各有多少只?
2、假设法:1、假设笼子里都是鸡。 解:35*2=70 94-70=24 24|2=12 35-12=23 答:鸡有23只,兔子有12只。2、假设笼子里都是兔子。 同理可得,鸡有23只,兔子有12只。
3、孙子的解法“上置三十五头,下置九十四足。半其足得四十七。以少减多,再命之,上三除下四,上五除下七。下有一除上三,下有二除上五,即得”。 翻译成算术方法就是:兔数(94÷2)-35=12 鸡数35-12=23 也就是俗说的斩足法,也简单实用。
鸡兔同笼问题解析?
鸡兔同笼🐔问题解题思路鸡兔同笼问题”的4种理解方法
题目:有若干只鸡和兔在同个笼子里,从上面数,有三十五个头;从下面数,有九十四只脚。求笼中各有几只鸡和兔
解法:
(1)站队法
让所有的鸡和兔子都列队站好,鸡和兔子都听哨子指挥。那么,吹一声哨子让所有动物抬起一只脚,笼中站立的脚:94-35=59(只)。
那么再吹一声哨子,然后再抬起一只脚,这时候鸡两只脚都抬起来就一屁股坐地上了,只剩下用两只脚站立的兔子,站立脚:59-35=24(只)兔:24÷2=12(只);鸡:35-12=23(只)
(2)松绑法
由于兔子的脚比鸡的脚多出了两个,因此把兔子的两只前脚用绳子捆起来,看作是一只脚,两只后脚也用绳子捆起来,看作是一只脚
那么,兔子就成了2只脚。则捆绑后鸡脚和兔脚的总数:35×2=70(只)比题中所说的94只要少:94-70=24(只)。
现在,我们松开一只兔子脚上的绳子,总的脚数就会增加2只,不断地一个一个地松开绳子,总的脚数则不断地增加2,2,2,2……,一直继续下去,直至增加24,因此兔子数:24÷2=12(只)从而鸡数:35-12=23(只)
(3)假设替换法
实际上替代法的做题步骤跟上述松绑法相似,只不过是换种方式进行理解。
假设笼子里全是鸡,则应有脚70只。而实际上多出的部分就是兔子替换了鸡所形成。每一只兔子替代鸡,则增加每只兔脚减去每只鸡脚的数量。
兔子数=(实际脚数-每只鸡脚数*鸡兔总数)/(每只兔脚数-每只鸡脚数)与前相似,假设笼子里全是兔,则应有脚120只。而实际上不足的部分就是鸡替换了兔子所形成。每一只鸡替代兔子,则减少每只兔脚减去每只鸡脚的数量,即2只。
鸡数=(每只兔脚数*鸡兔总数-实际脚数)/(每只兔脚数-每只鸡脚数)
将上述数值代入方法(1)可知,兔子数为12只,再求出鸡数为23只。将上述数值代入方法(2)可知,鸡数为23只,再求出兔子数为12只。
由计算值可知,两种替代方法得出的答案完全一致,只是顺序不同。由替代法的顺序不同可知,求鸡设兔,求兔设鸡,可以根据题目问题进行假设以减少计算步骤
(4)方程法
随着年级的增加,学生开始接触方程思想,这个时候鸡兔同笼问题运用方程思想则变得十分简单
解:设兔有x只,则鸡有(35-x)只4x+2(35-x)=944x+70-2x=94x=12注:方程结果不带单位,从而计算出鸡数为35-12=23(只)
以述四种方法就是这一典型鸡兔同笼问题的四种不同理解和计算方法,在没有接触方程思想之前,用前三种方式进行理解。在接触方程思想之后,则可以用第四种方法进行学习。
鸡兔同笼问题怎么解决?
方法有很多,比较简单的有:1、(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数,总只数-鸡的只数=兔的只数。2、( 总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)=兔的只数,总只数-兔的只数=鸡的只数。
鸡兔同笼是中国古代的数学名题之一。 大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中叙述道:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?
小学数学鸡兔同笼公式原理?
假设都是兔
(兔的只数×4-实际的足数)÷(4-2)=鸡的只数
总数-鸡=兔的只数
鸡兔同笼问题应该怎么写?
小梅说她家的鸡与兔,数头有 16 个,数脚有 44 只.问:小梅家的鸡与兔各有多 少只
鸡兔同笼坐船问题及答案?
假设同笼里面都是鸡 那么鸡头数*2就是鸡脚数 多出来的脚/2就是兔子的数量
matlab鸡兔同笼问题解法?
鸡两只脚,兔四只脚
设鸡为x,兔为y
Matlab直接枚举就行了
x的范围[0,88]
y的范围[0,61(244/4)]
代码如下
for x=1:88
for y=1:61
if (x+y==88) && (2*x+4*y==244)
fprintf('鸡=',x,'兔子=',y)
return 0
end
end
end
鸡兔同笼问题怎么做?
鸡兔同笼问题,是一道小学五年级的问题。鸡兔同笼的方法。说白了就是假设问题。首先,鸡有两只腿,兔有四只腿。我们最好假设所有都是兔。然后减去多出来的腿,再除以鸡和兔角相差的数量,即可算出鸡的数量,兔的数量只需要用总数去减去鸡就可以了。
鸡兔同笼,还有一种问题叫做加分减分问题。他和鸡兔同笼的性质不同。它是倒扣的分数。所以他处理的数量是要把两个数量相加的,然后再相除。前面的方法和鸡兔同笼前面的方法一样。